

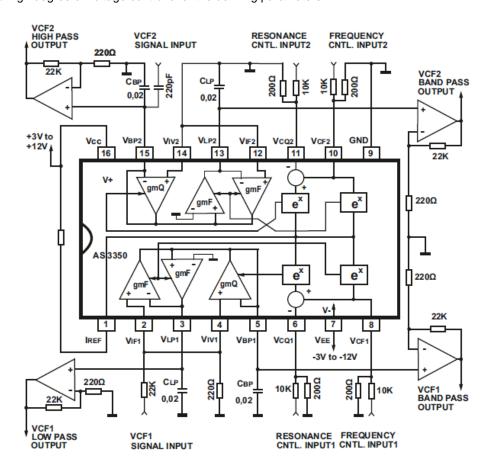
AS "ALFA RPAR" Joint Stock Company ALFA Riga, Latvia www.alfatriode.lv; marketing@triode.lv

AS3350 - Dual Voltage Controlled State Variable Filter

FEATURES

- two Independent state variable filters
- separate frequency and Q control Inputs for each channel
- · wide frequency sweep and Q control range
- · exponential control scales for both frequency and Q
- two simultaneous outputs on each: Low-Pass and Band-Pass or Band-Pass and High-Pass possible
- two simultaneous inputs for each: fixed gain and variable gain
- · configurable Into many V.C. filters
- wide supply range: ±3V to ±16V

APPLICATIONS


General Description

The AS 3350 is a dual voltage controlled state-variable filter intended for electronic musical instruments and other signal processing applications. Each filter provides both voltage control of center/cut-off frequency over more than 12 octaves and voltage control of Q from 1/2 to greater than 40. All control scales are exponential, allowing for easier control of the parameters over their wide range. Although the two filters are completely independent, they may be easily interconnected to form a wide variety of filter responses.

Each filter also provides two signal inputs: For signals applied to the fixed gain input, the output will remain constant as the Q is varied, while for signals applied to the variable gain input, the output decreases as Q is increased. The input signal may be proportioned between these two inputs to provide any desired characteristic.

Finally, each filter provides two simultaneous outputs, making directly available low-pass and band-pass, or band-pass and high-pass responses depending upon where the input signal is applied.

Able to operate over a wide supply range, the versatile AS 3350 allows new and unique filter responses to be created with a high degree of voltage control over the defining parameters.

Block and Connections Diagram

R

AS "ALFA RPAR" Joint Stock Company ALFA atria ways alfatrioda by: marketing@tric

Riga, Latvia www.alfatriode.lv; marketing@triode.lv

Typical Electrical Characteristics

 V_{CC} =+12V V_{EE} = -12V I_{REF} = 400 μ A T_A = 25 $^{\circ}$ C

Parameter	Min.	Тур.	Max.	Units
Frequency Control Range	12	13,5	-	octaves
Frequency C.V. Input Range ¹	+60	-	+260	mV
Frequency Control Scale Factor, Midrange	-18,5	-19,6	-20,6	mV/octave
Q Control Range ²	0.05		oscillation	
Q C.V. Input Range	+ 40		-150	mV
Q Control Scale Factor, Midrange	-62	- 65	-68	mV/10x
Maximum Q Without Enhancement	30	50	-	
Tempco of Frequency and Q Control Scales	+ 3000	+ 3300	+ 3600	ppm
Exponential Error of Frequency				
and Q Control Scales ³	-	3	10	%
Transconductance of Frequency				
Transconductors, $V_{CF} = 0$	4900	6900	9700	μmho
Transconductance of Q				
Transconductor, $V_{CF,Q} = 0$	3200	4900	7400	μmho
Maximum Transconductance of Frequency				
and Q Ttransconductors	11,000	14,200	18,500	µmho
Tempco of Transconductance at $V_{CF,Q} = 0$	-3000	-3300	-3600	ppm
Frequency Control Feedthrough ⁴	-	1	4	mV
Q Control Feedthrough ⁵	-	1	3	mV
Output DC Offset, midrange	-	±1	±5	mV
Distortion in Passband ⁶	-	1	5	%
Output Noise ⁷	-	0,8	2,5	μV.R.M.S.
Signal Input Bias Current, V _{CF,Q} = 0 ⁸	0,6	1,4	2,8	μΑ
Frequency and Q Control Input Bias Current	0,7	1,6	3,2	μΑ
Transconductor Output Impedance9				
$V_{CF,Q} = 0$	1	4	-	Mohm
Voltage at Pin 1 Referred to V _{EE}	1,6	1,8	2	V
Reference Current Range	10	-	600	μΑ
Positive Supply Current, $V_{CF,Q} = 0$	-	2,5	3	mA
Negative Supply Current	-	6,5	7,5	mA
Supply Voltage Range ¹⁰	±3	-	±16	V

Note 1. Nominal for 1000:1 Sweep

Note 2. With Q Enhancement

Note 3. +60mV < V_{CF} < +260mV. Most of this error occurs at higher transconductance portion of scale.

Note 4. + $60mV < V_{CF} < + 260mV$. As appears at V_{CP} or V_{BP} pin.

Note 5. -150mV< V_{CQ} <+40mV. As appears at V_{CP} or V_{BP} pin.

Note 6. V_{IF} or $V_{IV} = 40 \text{ mV.P.P.}$

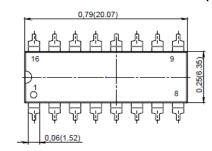
Note 7. Vcf = 0. As appears at Vqp or Vgp pin. 20KHz bandwidth.

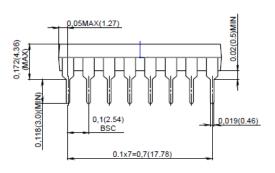
Note 8. Varies proportionally with transconductance.

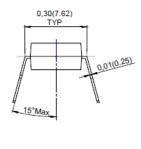
Note 9. Varies inversely with transconductance.

Note 10. Total supply voltage across the chip should not exceed 26V

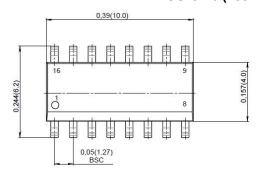
Specifications subject to change without notice.

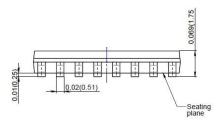

AS "ALFA RPAR" Joint Stock Company ALFA Riga, Latvia www.alfatriode.lv; marketing@triode.lv

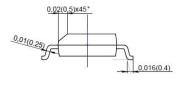

Package Information


Device type	Package		
AS3350	PDIP-16 (300 Mil, 2.54mm)		
AS3350 D	SOIC-16 (150 Mil, 1.27mm)		

Units: inch (mm)


PDIP-16 (300 Mil)





SOIC-16 (150Mil)

Revision history

Date	Revision	Changes
17-Jun-2019	1	Preliminary version 1
02-Sep-2019	2	Packages and Block and Connections Diagram updated
13-Jan-2020	3	Minor changes
18-Feb-2020	4	Minor changes in Block and Connections Diagram
06-Mar-2020	5	Minor parameter changes: Voltage at Pin 1 Referred to V _{EE}